A useful detailed literature for piping engineers about Piping Elbows and Bends

Piping Elbow and Piping bend are not the same, even though sometimes these two terms are interchangeably used.

Piping Elbows and Bends are very important  fitting which are used very frequently for changing direction in piping system. Piping Elbow and Piping bend are not the same, even though sometimes these two terms are interchangeably used. A BEND is simply a generic term in piping for an “offset” – a change in direction of the piping. It signifies that there is a “bend” i.e, a change in direction of the piping (usually for some specific reason) – but it lacks specific, engineering definition as to direction and degree. Bends are usually made by using a machine (hot  and cold ) on site and suited for a specific need. Use of bends are economic as it reduces number of expensive fittings.An ELBOW, on the other hand, is a specific, standard, engineered bend pre-fabricated as a spool piece (based on ASME B 16.9) and designed to either be screwed, flanged, or welded to the piping it is associated with. An elbow can be 45 degree or 90 degree. There can also be custom-designed elbows, although most are catagorized as either “short radius” or long radius”.
In short “All bends are elbows but all elbows are not bend”
Whenever the term elbow is used, it must also carry the qualifiers of type (45 or 90 degree) and radius (short or long) – besides the nominal size.
Elbows can change direction to any angle as per requirement. An elbow angle can be defined as the angle by which the flow direction deviates from its original flowing direction (See Fig.1 below).Even though An elbow angle can be anything greater than 0 but less or equal to 90°But still a change in direction greater than 90° at a single point is not desirable. Normally, a 45° and a 90° elbow combinedly used while making piping layouts for such situations.

A typical elbow with elbow angle
A typical elbow with elbow angle

Elbow angle can be easily calculated using simple geometrical technique of mathematics. Lets give an example for you. Refer to Fig.2. Pipe direction is changing at point A with the help of an elbow and again the direction is changing at the point G using another elbow.

Example figure for elbow angle calculation
Example figure for elbow angle calculation

In order to find out the elbow angle at A, it is necessary to consider a plane which contains the arms of the elbow. If there had been no change in direction at point A, the pipe would have moved along line AD but pipe is moving along line AG. Plane AFGD contains lines AD and AG and elbow angle (phi) is marked which denotes the angle by which the flow is deviating from its original direction.
Considering right angle triangle AGD, tan(phi) = √( x2 + z2)/y
Similarly elbow angle at G is given by : tan (phi1)=√ (y2 +z2)/x
Elbow Radius:
Elbows or bends are available in various radii for a smooth change in direction which are expressed in terms of pipe nominal size expressed in inches. Elbows or bends are available in three radii,
a. Long radius elbows (Radius = 1.5D): used most frequently where there is a need to keep the frictional fluid pressure loss down to a minimum, there is ample space and volume to allow for a wider turn and generate less pressure drop.
b. Long radius elbows (Radius > 1.5D): Used sometimes for specific applications for transporting high viscous fluids likes slurry, low polymer etc. For radius more than 1.5D pipe bends are usually used and these can be made to any radius.However, 3D & 5D pipe bends are most commonly used
b. Short radius elbows (Radius = 1.0D): to be used only in locations where space does not permit use of long radies elbow and there is a need to reduce the cost of elbows. In jacketed piping the short radius elbow is used for the core pipe.
Here D is nominal pipe size in inches.
There are three major parameters which dictates the radius selection for elbow. Space availability, cost and pressure drop.
Pipe bends are preferred where pressure drop is of a major consideration.
Use of short radius elbows should be avoided as far as possible due to abrupt change in direction causing high pressure drop.
Minimum thickness requirement:
Whether an elbow or bend is used the minimum thickness requirement from code must be met. Code ASME B 31.3 provides equation for calculating minimum thickness required (t) in finished form for a given internal design pressure (P) as shown below:

Code equation for minimum thickness requirement calculation
Code equation for minimum thickness requirement calculation

Here,
R1 = bend radius of welding elbow or pipe bend
D = outside diameter of pipe
W = weld joint strength reduction factor
Y = coefficient from Code Table 304.1.1
S = stress value for  from Table A-1 at maximum temperature
E = quality factor from Table A-1A or A-1B
Add any corrosion, erosion, mechanical allowances with this calculated value to get the thickness required.
End Connections:
For connecting elbow/bend to pipe the following type of end connections are available
Butt welded: Used alongwith large bore (>=2 inch) piping
Socket welded: Used alongwith pipe size
Screwed:
Flanged:
Butt welded Elbows:
Pipe is connected to butt welded elbow as shown in Fig. 4 by having a butt-welding joint.
Butt welded fittings are supplied with bevel ends suitable for welding to pipe. It is important to indicate the connected pipe thickness /schedule while ordering. All edge preparations for butt welding should conform to ASME B16.25.
 of butt welded elbows are as per ASME B16.9. This standard is applicable for carbon steel & alloy steel butt weld fittings of NPS 1/2” through 48”.

A typical Butt-Welded Elbow
A typical Butt-Welded Elbow

  • Dimensions of stainless steel butt welded fittings are as per MSS-SP-43. Physical dimensions for fittings are identical under ASME B16.9 and MSS-SP-43. It is implied that the scope of ASME B16.9 deals primarily with the wall thicknesses which are common to carbon and low alloy steel piping, whereas MSS-SP-43 deals specifically with schedule 5S & 10S in stainless steel piping.
  • Dimensions for short radius elbows are as per ASME B16.28 in case of carbon steel & low alloy steel and MSS-SP-59 for stainless steel.
  • Butt welded fittings are usually used for sizes 2” & above. However, for smaller sizes up to 1-1/2” on critical lines where use of socket welded joints is prohibited, pipe bends are normally used. These bends are usually of 5D radius and made at site by cold bending of pipe. Alternatively, butt welded elbows can be used in lieu of pipe bends but usually smaller dia lines are field routed and it is not possible to have the requirement known at initial stage of the project for procurement purpose. So pipe bends are preferred.
  • However, pipe bends do occupy more space and particularly in pharmaceutical plants where major portion of piping is of small dia. and layout is congested, butt welded elbows are preferred.
  • Butt welded joints can be radiographed and hence preferred for all critical services.
Material standards as applicable to butt welded fittings are as follows:
ASTM A234:
This specification covers wrought carbon steel & alloy steel fittings of seamless and welded construction. Unless seamless or welded construction is specified in order, either may be furnished at the option of the supplier. All welded construction fittings as per this standard are supplied with 100% radiography. Under ASTM A234, several grades are available depending upon chemical composition. Selection would depend upon pipe material connected to these fittings.
Some of the grades available under this specification and corresponding connected pipe material specification are listed below:
ASTM A403:
This specification covers two general classes, WP & CR, of wrought  fittings of seamless and welded construction.
Class WP fittings are manufactured to the requirements of ASME B16.9 & ASME B16.28 and are subdivided into three subclasses as follows:
WP – SManufactured from seamless product by a seamless method of manufacture.
WP – W These fittings contain welds and all welds made by the fitting manufacturer including starting pipe weld if the pipe was welded with the addition of filler material are radiographed. However no radiography is done for the starting pipe weld if the pipe was welded without the addition of filler material.
WP-WX These fittings contain welds and all welds whether made by the fitting manufacturer or by the starting material manufacturer are radiographed.
Class CR fittings are manufactured to the requirements of MSS-SP-43 and do not require non-destructive examination.
Under ASTM A403 several grades are available depending upon chemical composition. Selection would depend upon pipe material connected to these fittings. Some of the grades available under this specification and corresponding connected pipe material specification are listed below:
:
This specification covers wrought carbon steel and alloy steel fittings of seamless & welded construction intended for use at low temperatures. It covers four grades WPL6, WPL9, WPL3 & WPL8 depending upon chemical composition. Fittings WPL6 are impact tested at temp – 50° C, WPL9 at -75° C, WPL3 at -100° C and WPL8 at -195° C temperature.
The allowable pressure ratings for fittings may be calculated as for straight seamless pipe in accordance with the rules established in the applicable section of ASME B31.3.
The pipe wall thickness and material type shall be that with which the fittings have been ordered to be used, their identity on the fittings is in lieu of pressure rating markings.

Seamless steel pipe >>

Seamless steel pipe >>
Seamless steel pipe is alos called CDS pipes (Cold drawn seamless pipe).

Pipe fitting >>

Pipe fitting >>
Pipe fitting is work that involves the installation or repair of pipes or tubes. Pipes and tubes are necessary for a wide range of reasons.

Flanges General >>

Flanges General >>
A flange is a method of connecting pipes, valves, pumps and other equipment to form a piping system.

Get in Touch

Welcome to Sunny Steel Enterprise Ltd.

Sunny Steel provide a wide range of steel products as Steel pipes, Seamless tube and seamless pipes, Alloy pipes, Pipe fittings, Composite steel pipe used in the industry, construction etc.

You can get in touch by telephone, post, online or E-mail.
Please check the help section first to see if your question may be answered there.